Course Number and Name BEE301- CIRCUIT THEORY Credits and Contact Hours

3 & 45

Course Coordinator's Name

Ms G.Meena Kumari

Text Books and References

TEXT BOOKS:

- 1.Sudhaker A. and Shyam Mohan S.p., "Dircuits and Network Analysis and Synthesis" Tata McGrew Hill Co. Ltd., New Delhi, 1994.
- 2.U.A Bakshi. "Electric Circuit Analysis", Technical Publication, Pune.

REFERENCE BOOKS:

- 1.Edminister J.A. "Theory and Problems of Electric Circuits " Schaum's outline series, McGrew hill Book Company 2nd edition, 1983.
- 2. Hyatt W.H. and Kemmerlay J.E. "Engineering Circuits Analysis", McGrew Hill international Editions, 1993.
- 3. http://nptel.ac.in/courses/108102042/

Course Description

To develop problem solving skills and understanding of circuit theory through the application of techniques and principles of electrical circuit analysis to common circuit problems.

Prerequisites	Co-requisites						
Basic Electrical and Electronics Engineering	NIL						
required, elective, or selected elective (as per Table 5-1)							
required							

Course Outcomes (COs)

- Co1- To develop an understanding of the fundamental laws and elements of electric circuits.
- Co2- To develop the ability to apply circuit analysis to DC and AC circuits
- Co3- To understand advanced mathematical methods such as Laplace and Fourier transforms along with linear algebra and differential equations techniques for solving circuits problem
- Co4- To learn the "alphabet" of circuits, including wires, resistors, capacitors, inductors, Voltage and current sources, and operational amplifiers.
- Co5- To understand about sinusoidal steady state analysis
- Co6- To analyse about coupled circuits

Student Outcomes (SOs) from Criterion 3 covered by this Course

COs/SOs	a	b	С	d	е	f	g	h	i	j	k	
CO1	М	Н	Н	Н	L	М	L			Н	М	
CO2	M	Н	Н	М	М	Н	М	М		L	М	
CO3	Н	М		Н	Н		М			L	L	
CO4	Н	М		Н	Н	L	М	М		L	М	
CO5	М	М	М	М	Н		М			Г	Г	
CO6	М	Н	Н	Н	L	М	L			Н	М	

List of Topics Covered

UNIT I – BASIC CIRCUIT CONCEPTS

9

Circuit elements – Kirchhoff's Law – V-I Relationship of R,L and C – Independent Sources – Dependent sources – Simple Resistive circuits – Networks reduction – Voltage division – current source transformation.- Analysis of circuit using mesh current and nodal voltage methods.

UNIT II – SINUSOIDAL STEADY STATE ANALYSIS

9

Phasor – Sinusoidal steady state response concepts of impedance and admittance – Analysis of simple circuits – Power and power factors — Solution of three phase balanced circuits and three phase unbalanced circuits — Power measurement in three phase circuits.

UNIT III-NETWORK THEOREMS (BOTH AC AND DC CIRCUITS)

9

Superposition theorem – The venin's theorem - Norton's theorem-Reciprocity theorem- Maximum power transfer theorem.

UNIT IV - TRANSIENT RESPONSE FOR DC CIRCUITS

9

Transient response of RL, RC and RLC Circuits using Laplace transform for DC input with sinusoidal input.

UNIT V RESONANCE AND COUPLED CIRCUITS

9

Series and paralled resonance – their frequency response – Quality factor and Bandwidth - Self and mutual inductance – Coefficient of coupling – Tuned circuits – Single tuned circuits.